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Nonlinear dynamics: stability and
bifurcations

In this module on climate modelling we will be studying various di�ferential equations  that model
the evolution of aspects of the climate over time.

The simplest such models are ordinary di�ferential equations  (ODEs), where one or a few
continuous variables evolve continuously in time, with a model that speci�es their instantaneous
rate of change as a function of their current values.

The general form of an ODE (that doesn't depend explicitly on time, i.e. that is autonomous), is

or

with an initial condition .

Here,  denotes the derivative of the function  at time .

The simplest numerical method to solve such an equation is the (forward) Euler method, in which
we convert this equation into an explicit time-stepping routine: we take a small time step of length 

 and approximate the derivative as

giving the approximation

for the approximation at the next time step.

using Plots⋅

begin
    
    using PlutoUI
    using LaTeXStrings
    using Roots
end

⋅
⋅
⋅
⋅
⋅
⋅
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Solving the ODE: Euler method

Let's use this to simulate a simple nonlinear ODE that describes the dynamics of a population of
bacteria. The bacteria will grow by reproduction at a rate  provided there is su��cient food, in
which case we would have . But the available food will actually always limit the sustainable
population to a value . A simple model for this is as follows:

When  is close to , the growth rate is , but that rate decreases as  increases.

This is sometimes called the logistic di�ferential equation  (although the name does not seem
particularly helpful).

Our goal is to use computational thinking, but we will actually not be interested so much in the
exact dynamics in time, but rather in the qualitative  features of the behaviour of the system. For
example, at long times (formally ) does the population get arbitrarily large? Or does it, for
example, oscillate around a particular value? Or does it converge to a particular size? This forms the
subject of nonlinear dynamics  or dynamical systems  theory.

Let's simulate the system using the Euler method to try to guess the answer to this question. Note
that there are many much more sophisticated methods for solving ODEs collected in the
Di�ferentialEquations.jl package. We should never use the Euler method in practice, but should use
a tried and tested library instead, and algorithms that provide much better accuracy in the solutions,
if we are interested in faithful numerical results.

We'll rescale the variables to the simplest form:

logistic (generic function with 1 method)

Let's simulate this with Euler and plot the trajectory  as a function of time :

results
(ts = Float64[0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.

 = 

We see that for this particular initial condition, the solution seems to settle down to a �xed value
a�ter some time, and then remains at that value therea�ter.

Such a value is called a �xed point  or a stationary point  of the ODE.

logistic(x) = x * (1 - x)⋅

results = euler(logistic, 0.5, 0.01, 20.0)⋅

https://en.wikipedia.org/wiki/Logistic_function#Logistic_differential_equation
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Qualitative behaviour: Fixed points and their
stability

Let's see if what happens for other initial conditions:

0.0

To get an overview of the behaviour we can also draw all the results on a single graph:

We see that all the curves starting near to  seem to converge to 1 at long times. If the
system starts exactly  at 0 then it stays there forever. However, if it starts close to 0, on either side,
then it moves away  from 0 (on that same side of 0) – starting from a negative value  becomes ever
more negative. (Even though negative populations have no meaning in the original interpretation as
the dynamics of a population, we can still ask study the dynamics of the equation with negative
initial conditions, since it may model other systems too.)

The special values  and  are called stationary points  or �xed points  of the di�ferential
equation. If we start at , then the derivative there is , and hence we cannot move away
from ! The �xed points can be found as zeros or roots  of the function , i.e. values  such that 

.

We see, though, that the two types of �xed points are qualitatively di�ferent: trajectories that start
close to  move towards  , whereas trajectories that start close to  move away  from it.
We say that  is a stable �xed point  and  is an unstable �xed point.

In general it is not possible to �nd analytical formulas for the position and stability of �xed points;
instead, we can use numerical root-�nding algorithms, for example the Newton method: see e.g.
course 18.330 next semester. There are various Julia packages for root �nding; we will use Roots.jl .

@bind x0 Slider(-1.0:0.001:20, default=0.0, show_value=true)⋅
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State space: Vector �eld and phase portrait

If we want to �nd the whole trajectory for a given initial condition then we need to solve the
equations, either numerically or analytically.

However, we may want less information about the system, for example the long-time  or asymptotic
dynamics. It turns out that we can obtain some information about that without  explicitly solving the
ODE! This is the qualitative approach  to studying nonlinear systems.

Instead of drawing trajectories  as a function of time , as we did above, let's use a di�ferent
graphical representation, where we draw state space  or phase space: This is the set ("space") of all
possible values of the dependent variables ("states"). For the above ODE there is only a single
dependent variable, , so the state space is the real line, .

At each possible value of , the ODE gives us information about the rate of change of  at that
point. Let's draw an arrow  at that point, pointing in the direction that a particle placed at that point
would move: to the right if  and to the le�t if .

This vector �eld indeed gives us a qualitative  picture of the dynamics. It does not tell us how fast the
dynamics will occur in each region, but it indicates what the tendency  is. We have coded the �xed
points according to their stability; this may be calculated using the derivative evaluated at the �xed
point, , since this derivative controls the behaviour of nearby initial conditions . The
unstable �xed point is shown as a green square, and the stable �xed point as a grey circle; we will
use this convention throughout the notebook.

Bifurcations

Now suppose that there is a parameter   in the system that can be varied. For each value of  we
have a di�ferent  ODE

For example, 

Let's draw the state space for each di�ferent value of :

g (generic function with 1 method)

vector_field(logistic)⋅

g(μ, x) = μ + x^2⋅
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-1.0

Now let's collect all the vector �elds into a single plot. We rotate  the vector �eld to now be vertical,
thinking of the dynamics of  as occurring along the vertical direction. The horizontal axis now
represents the di�ferent possible values of the parameter :

We see that at the critical value   there is a qualitative change in behaviour  in the system:
for  there are two �xed points, whereas for  there are no �xed points at all. In this
particular ODE the two �xed points collide in a saddle–node  or fold  bifurcation.

Bistability and hysteresis

Now let's look at the dynamics of the following system:

h (generic function with 1 method)

We see that there is a range of values of  for which there are three coexisting �xed points, two stable
and one unstable. Since there are two stable �xed points in which the system can remain, we say
that the system is bistable.

@bind λ Slider(-1.0:0.05:1, show_value=true)⋅

vector_field(x -> g(λ, x))⋅

bifurcation_diagram(g)⋅

h(μ, x) = μ + x - x^3⋅

bifurcation_diagram(h)⋅
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Now that we understand what the plots mean and the dynamics, let's plot just the �xed points 
 as a function of . Such a plot is called a bifurcation diagram:

The pieces of curve are called branches.

Hysteresis

Suppose we now think about slowly varying the parameter . If we change the parameter  by a
little, the system is no longer at a �xed point, since the position of the �xed point moves when 
changes. However, the system will theb relax  by following the dynamics at the new value of , and
will rapidly converge to the new �xed point nearby.

For example, starting at , the system will stay on the lower black (stable) branch  until 
 or so. At that point, two �xed points collide and annihilate each other! A�ter that there is

no longer a �xed point nearby. However, there is another �xed point much further up that will now
attract all trajectories, so the system rapidly transitions to that �xed point.

Now suppose we decrease the parameter again. The system will now track the upper  branch until 
 or so, when again it will jump back down.

For each parameter value  in the interval  there is bistability, i.e. coexistence  of two
�xed points with the same value of  (together with a third, unstable �xed point that is not
observable).

The fact that the system tracks di�ferent stable branches depending on where we started, i.e. on the
history, is known as hysteresis.

Hysteretic behaviour like this is found in many scienti�c and engineering contexts, including
switches in biology, for example genetic switches, and in the historical dynamics of the earth's
climate.

Slow–fast systems

What are we actually doing when we let the parameter  vary? E�fectively we now have a system
with two  equations, for example

fixed_points(h)⋅
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where  varies at some slow speed . On a time scale much shorter than , the dynamics of 
"does not know" that  is changing, so it will converge to a �xed point  for the current value of

. [An associated term is adiabatic approximation.] However,  does gradually change, so the value
of  will e�fectively "slide along" the curve , tracking the curve of �xed points as 
changes.

Once  reaches a critical value , however, there is no longer a nearby �xed point, and the
dynamics will rapidly transition to the far away alternative �xed point.

If we now reverse the dynamics of , we slide back along the upper branch.

Function library

euler_step (generic function with 1 method)

euler (generic function with 1 method)

derivative (generic function with 2 methods)

Main.workspace3.horiz_vector_field

Main.workspace3.vector_field!

vector_field (generic function with 1 method)

bifurcation_diagram (generic function with 1 method)

fixed_points (generic function with 1 method)


