Doing Scientific Machine
Learning with Julia’s ScIML

Ecosystem

CHRIS RACKAUCKAS
APPLIED MATHEMATICS INSTRUCTOR, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MATHEMATICS

SENIOR RESEARCH ANALYST, UNIVERSITY OF MARYLAND, BALTIMORE, SCHOOL OF PHARMACY
DIRECTOR OF SCIENTIFIC RESEARCH, PUMAS-AI

What to expect from this workshop

We will go through “what is scienfific machine learning” all the way through some
examples of how to do scientific machine learning in Julia:

» Parameterinference of differential equation model
» Add events to equations, add stochasticity, add delays
» Bayesian inference of scientific models
This tutorial is meant to be raw:
» We're going to be live coding
» “We”, asin you and me!
» We are going to be learning the methods as we learn to write the code

» We are going to learn how to navigate the ecosystem, the documentation,
the IDE, the error messages

How to Help!

» Star the repositories

» DifferentialEquations.jl, DIffEgFlux.jl,
DataDrivenDIffEq.jl, NeuralPDE.jl,
ModelingToolkit.jl, Catalyst.|l

» Flux.jl, Zygote.jl, SparseDiffTools.jl, etc.
Report bugs
Create tutorials
Write blog posts
Share data and challenge problems
Help in chats and community channels

Add your own packages to the common
interface

Contribute to the SciIML packages

vV vy Vv Vvyy

v

B Microsoft

Studies in Pandemic Preparedness
Simon Frost

i

& Pumas

NUMFOCUS

OPEN CODE = BETTER SCIENCE

ssJulia

computing

We thank all of those who have previously
helped SciML development

Workshop

Outline

Overview of scientific machine learning and SciML
» What is scientific machine learning?
» What makes the SciML ecosystem unique?
Intfroduction to challenge and learning problems
» Workshop exercises (with answersl)
» HelicopterSciML Challenge Problem
» Magnetic Navigation Challenge Problem
Modeling with differential equations
» Solving differential equations with DifferentialEquations.jl
» Adding stochasticity, delays, events
Automated model discovery via universal differential equations
» Parameter inference on differential equations
» Local and global optimization
» Bayesian optimization
» Mixing DiffEgFlux.jl and DataDrivenDiffEQ.jl!

Solving differential equations with neural networks (physics-
informed neural networks)

Scientific machine learning is the
mixture of scientific models with

data-driven machine learning
components for data-efficient
model-based decision making

Universal

Approximation
Theorem

NEURAL NETWORKS CAN GET e CLOSE TO ANY
R™ - R™ FUNCTION

Neural networks are just function expansions,
fancy Taylor Series like things which are good
for computing and bad for analysis.

Neural networks work well in high dimensions

The major advances in
machine learning were due to
encoding more structure Info

the model

MORE STRUCTURE = FASTER AND BETTER FITS FROM LESS DATA

Convolutional Neural Networks Are
Structure Assumptions

7

T

— CAR
— TRUCK
— VAN

A e esee 3

sELL T T LT

RS EREE

.

3
W 4 [l [[] — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COLUF:IE-I:TED SOFTMAX

K i Y

FEATURE LEARNING CLASSIFICATION

Universal Ditferential Equations:
Differential Equations de

ned in part

oy universal approxi

Mmators

Use all known scienfific features, use
all numerical methods, have neurdl
networks cover the last mile

B(t) = o(1 — @) (1~ 2

- PoSE B(t)SI

N

— uS
N N l“l’ ’
SF t)S1
I' = oE — (v + p)1,
R = vI — uR,
‘N'Jr — _ll’Nﬂ
D = d~Il —AD, and
No— ok,
. K= 1117.3

A conceptual model for the coronavirus
disease 2019 (COVID-19) outbreak in
Wuhan, China with individual reaction
and governmental action

Lin, Qianying et al.

International Journal of Infectious
Diseases, Volume 93, 211 - 216

Neural ODE: Learn the whole model

Neural ODE Extrapolation
u'=NN(u) . ~

@ TueExposed

@ Tue Infected

@ TueRecoversd
s Fotimated Exposed
Esfimated Infected

Can fit, but not enough information to Esimated nfected
accurately extrapolate s Tiring Data End

1000

1500

Does not have the correct asymptotic
behavior 500 |

Universal ODE

Estimated vs Expected Exposure Term

@ Tiue Exposu e
Estimated Exposurs

1500

1000

Replace
Unknown
Portion

Replace
Unknown
Portion

oE — (v + p)l,
vI — pR,
—pdV,
d vI — \D,
oF,

and

Exposure:
Unknown

o+ u |k,

Infection rates: known
From disease quantities

Percentage of cases
known o be severe,
can be estimated

1500

1000

Neural ODE Extrapolation

@ Thue Exposed

@ e Infected

@ Tue Recovered
s Estimated Exposed
Estimated Infected
m— Fofimated Recoverad
mmm—Trzining Data End

Universal ODE Extrapolation

@ Thue Exposed

@ e Infected

@ Tue Recovered
s Estimated Exposed
Estimated Infected
m— Fofimated Recoverad
mmm—Trzining Data End

60

SINDy — Sparse ldentitication of

Dynamical Systems

stabe

(¥ ()] [aln) xn) xn)]
% (1) x(tz) xifa) - min) |

X= . =) .) . Jtime
_xT[.'rm)] | 1 |:-Fr.l|) I:[.!.llr | I Ir:':.fr.u]]
o _ Not Enough
X (1)) xin) o Xy (n)

<o | ¥ | _ [0 2 o i) Data! Unable
iT[.-rm:l _-fll:.rr.u:l JE.I[:r.ur:' -fu':.!r.u]_ to thIeve q

sparse basis

MNext, we construct a library 8(X) consisting of candidate non-
linear functions of the columns of X. For example, &{X) may
consist of constant, polynomial, and trigonometric terms:

@X)=1 x x"™ x" - sinX) cos(X) ---[. [2]

Brunton, Steven L., Joshua L. Proctor, and J. Nathan
Kutz. "Discovering governing equations from data by
sparse identification of nonlinear dynamical
systems." Proceedings of the national academy of
sciences 113.15 (2016): 3932-3937.

sparse vectors of coethic 5 2= g "t that determne
which nonlinearities are active:

X=08(X)= [3]

Operation[cos(uy) * -0.0013108600297508188 + COS(UZ) *0.001048733466930909 +
sin(uz) * 0.002524237642240494 + 4.582000697122147 + u3 * 48 227453 5102507 + us
N2*-0. 5293305992835255 + U, * 39.085961651678964 + U, *

0.6742175940650399 + U, * Uz A2 *0.0018086945606415868 + UZ A 2 -
0.7760315827702667 + U, A 2 * Uz * -0.00827007707292397 + U N2 ¥ Ug A2 % -
4.8420203054602525e-5 + U, * 0.6927075862062384 + Uy * ug * 2.54778963841 87675 +
Uy * Uz A 2%*-0.007633697801342265 + U, * U, * -0.8050223920175605 + Uy * U, * ug * -
0.005893734488035572 + Uy * U, * Us A 2 * -4.205818407350913e-5 + Uy * U, A2 *
0.05154776022562611 + Uy * Uy A2 * Uz *0.00011401535262358879 + Uy * U, A2 % Uz A
2*-1.8409670007515867e-7 + Uy A 2*-1.480917344589218 + uy N2 * Uz *
0.022834435321810845 + u; A 2 * ug A 2 *-7.10505011605666e-5 + uy A2 * U, * -
0.0811262292209696 + Uy A2 * U, * Uz * 1.2503710381374686€-5+ Uy N2 * Uy Fus A2
*-1.5835869421530206e-7 + Uy A 2 * U, A2 *0.0003756078420420898 + us A2 ¥ U, A2
* Uz *2.0403671083190194e-6 + Uy N2 % U, N2*F Uz A2 % —4.079005906758051 6e-10,
cos(u,) * 0.0018236630124880049 + sin(uz) * -0.002857556410244201
0.738713743952307 + us * 45 316633125282735 + uz A 2 * O 4976552341 495027 + uy *
-36.669905096040644 + U, * Uz * 0.63405194300575 + U, * Uz N 2 * -
0.001699189499009162 + u, A 2 * 0.7292234161358288 + Uz LT
0.007782847250932861 + U2 N2*uz N2* 455378323431 153856 5 + Ug * -
0.662837140886116 + Uy * Us_ * 2 3955577736237044 +U U A2
0.007174813124917316 + uy *

0.7564652530371222 + Uy * U, * Uz * 0.005539740817006857 + Uq * Uy * Uz A2 *
3.95285974957507 6e-5 + U1 Uz N 2*-0.04846972496409705 + Uy * Uz N2*uyz*
0.00010714683124587004 + Uy U, A2 *uz A 2% 1.7315253185547634e-7 + uy A 2 *
1.3922758705496125 +

Ui N2 *u3 *-0.021478161074782457 + uy N2 * ug N2 * 6.675620535553527¢e-5+ uy A

2* U, *0.07628907557295377 + Uy N2 * Uy * Uz *-1.174623626431566e-5+ u; N2 * U,

: Us N 2*1.48585363528363%6e-7 + uy; N2 * U, A2*-0.0003531614272747699 +uy N2
Uz

N2*U3*-1.9178976768869506e-6 + Uy N2 * U, A 2% ug A2 *3.8405659245262027e-
10, -0.04932474700217403 + u, * 0.17406814677977456 + uy N2 * Uy * -
1.4594144102122378e-6]

Universal ODE -> Internal Sparse Regression

Sparse Identification on only the missing term

Operation[u, * 0.10234428543435758 + u; * U, * 0.11371750552005416 +
Ui A 2% U, *0.12635459799855597] of u=(S/N.I.D/N)

Replace

/ @ Tue Exposed
S Unknown @® Tus Infected

Portion @ Tue Recoversd
1500 s Eotimated Exposed

Replace s Ectimated Infected

/ S Unknown e ciimated Recovered
E — . w— Trzining Data End
Portion

1000

~
|

500

ML-Augmented Scientific
Modeling

1. IDENTIFY KNOWN PARTS OF A MODEL, BUILD A UODE

2. TRAIN A NEURAL NETWORK (OR OTHER APPROXIMATOR) TO CAPTURE
THE MISSING MECHANISMS

3. SPARSE IDENTIFY THE MISSING TERMS TO MECHANISTIC TERMS
4. VERIFY THE MECHANISMS ARE SCIENTIFICALLY PLAUSIBLE
5. EXTRAPOLATE, DO ASYMPTOTIC ANALYSIS, PREDICT BIFURCATIONS
6. GET MORE DATA TO VERIFY THE NEW TERMS

UTILIZE ALL ADVANCED NUMERICAL METHODS WITH ML!

U-ODE'’s for eVTOL Battery Modeling: 19%
Increase in Degradation Modeling Accuracy

Coupled Electrochemical-Thermal Performance Model

ssion, cycle #1

Temperature (°C)

o
o

00 150

@
o

.
=]
|

%]
o
1

ission, cycle #800

Temperature (°C)

o
o

150

)

C
5 @
(=) (=]
1 1

n
o
1

mission, cycle #1

Temperature (°

o
o

100 150

@
[=)

=
[=]
1

N
(=)
1

in, cycle #701

Temperature (*C)

(=}
o

150

U-ODE Degradation Model

Tesla Model S/X Mileage vs Remaining Battery Capacity

Remaining Range

95% b o®
... L]

90%

85%

0km 50,000 km 100,000 km 150,000 km 200,000 km 250,000 km

. Mileage
Cycles \2.1‘:1, &b\ \2.}&) \2.3”\

K\alI\ o\ i\ o

A. Bills, S. Sripad, W. L. Fredericks, M. Guttenberg, D. Charles E. Frank, V. Viswanathan, Universal Battery Performance and Degradation Model for Electric Aircraft, DOI: 10.26434/chemrxiv.12616169.v1

https://electrek.co/2018/04/14/tesla-battery-degradation-data/

Data-Driven Quantification of

Quarantine Strength

Iif]'f[f]'

— (v + NN(W,U)) I(t)

= ~I(1) + 6T(t)

= O(t) I(t) = NN(W.U) I(t) - 6T(¢).

A machine learning aided global diagnostic
and comparative tool to assess effect of
quarantine control in Covid-19 spread

Raj Dandekar,! Chris Rackauckas,? and George Barbastathis®-}

Qlt)

Qit)

1.0

0.8p

0.6

0.4

0.2

0.0

1.0

0.8

0.6

045

0.2

11 — I
1 = I
1 I P 0.4k | __...‘-.u"'.‘
| ’ |
I s I e
b 0.2p '.'.
1 - b
1 s I ..'l

1 0.0 1

0 20 40 60 o 20 40 60
Days post 500 infected Days post 500 infected
(a) New York (b) New Jersey
1.0
Quarantine strength # Quarantine strength
= = Stay at home imposed = = Stay at home imposed
= = Inflection point in learnt Q(t) 0.8F = = Ramp up point in learnt QIt)
1 I =T
1 | = 11
1 | 0.4k 11
1 I T
1 11
0.2F
1 | 11
1 | 11
1 1 0.0
20 40 60 ’ 20 a0 60

0.0

Quarantine strength
= = Stay at home imposed
= = |nflection point in learnt Q(t)

1.0

0.8

0.6F

#® Quarantine strength
= = Stay at home imposed
= = |nflection point in learmnt Q(t)

Days post 500 infected

(c) Illinois

Days post 500 infected

(d) California

B Contact

1 Russis 2. UK 3. Spain d. Italy

(a) Europe

I Contact rate: g
ranting affic

1. India 2. Chifig

() Asia

Fipure 15 Global comparison of infection,

EEE Caonkach rate:
ranting afficiancy
ry rate: ¢ + 8

1, Brazil £, Chile

(el) South America
v rates and quarantine ethciency.

DIagnostics
En Masse
Revedl

Interesting
Trends

But ODEs are simple, lets
move To more difficult

equations

Warning: these next tew slides may

be information overload if you're nof
familiar with scientific computing.
That's okay! Take in what you can.

Universal Differential-Algebraic Equations:

Encoding Physical Constraints

Utilize known chemical kinetics

yi = —0.04y1 + NN1(y1,y2,¥3)

vy = 0.04y; + NNao(y1, 92, y3)
l=y1 +y2+ys

With known conservation laws

Mu' = f(u) + NN (u)

Convert to a mass-matrix DAE
(singular mass matrix) and fit

U 8— — ulit]
0.6F —)
0.4F T
0.2f
L L L L 1
1p 100p 0.01 1 100 10k
0.000035+
0.000030 t
0.000025F
0.000020F
0.000015%F
0.000010F
0.000005F
L L L L
1p 100p 0.01 1 100 10k
0.8} t
0.6f
0.4
0.2
b k L 1
1p 100p 0.01 1 100 10k
t

Learn highly stiff equations: Hessian condition number 1013

Discretized PDE Operators are

Convolutions

u(z + Az,y) — 2u(z,y) tul@ — Az,y) | u(@,y+ Ay) - 2u(@y) +u(z — 2,y - Ay)

Ax? Ay?
1x1 1><ﬂ 1x1 0 0
Oxﬂ 1::1 1><ﬂ 1 0 4 e 1 e
olol1l111 s equivalent to the stencil 1 -4 1
x1 x0 x1
0(0(1|1]|0 O 10
011(1(0]|0 u(z + Azx) — 2u(z) + u(x — Ax) ;
Convolved Az =u'(z) + O (Az%)
Image
Feature

AU = Uzy + Uy,

Automatically Learning PDEs from

Data: Universal PDEs for Fisher-KPP

Prediction

Truth: Fisher-KPP Equations A Data p

pr =1rp(l —p)+ Dpse,

Truth: Universal Differential Equation o o o

pr = NNo(p) + D CNN(p), C NN Weights
iy S
Automatically recover that the dynamical system 01
has a diffusion operator and a quadratic reaction 0.2 -
term! 034 — wijus—s
0.4 1 L

I I I
0 1500 3000
Epochs P

Embedding Neural Networks

INTo Sclentific Simulation Can
Also Be Used To Acceleratel

Universal ODEs Accelerate Non-

Newtonian Fluid Simulations

G(t —s)F(y(s)) ds,

3yt r -
(a) which depends on the history of deformation, with some mem-
10" ‘j“_“__\\ ory function GG (55). This is equivalent to the following instan-
e 1Rk s\ taneous form:
o) S
- 10' | Training error, Neural net J(t) - CZ51 (t)’ [16]
00 ¥es_tir_1g error, I\I{eural netd I d¢ 1
1 B raining error, linear modae - - 4
Testinggerror, linear model dt o G(O)F(FY) + d)z’ [17]
107 : d¢2 dG(0) ., .
o? 0’ * =
0 " Traini1ng steps 1 " dt dt F() + ¢s, 18]
(b) 1 Linear model :
NN soluti . .
— Tru:gcl)llt?ign O'(t) = UO (77 ¢17 ceey ¢N)7
. Transform a system dpn -
g Of DAEs into 5 = i1 d1,..,¢n),
Parameterized
system of ODEs,
2x accelerafion don

—= = Un (4,61, ¢w),

Universal PDEs for Acceleration:

Automated Climate Parameterizations

Spatial Plot at t=0.46551725
©

Time Series Plot: Middle X

Boussinesq Equations (Navier-Stokes) are used in
climate models

o° _
0351 ...o‘ V.u=0
o)
A5t o® du
030} o 015 00 S (w0 V)u = —Vp+ PV b2
o0
(o] o0
0.25} o® db 5]
Q - . _ Z
$ 010l ° 5, Fu-Vb=Vih+Fe
0.20 o ..m.. Q@
. M 1] S "
0.15 ° ° » People attempt fo solve this by “parameterizing”,
° data 0.05/ o @ data l.e. getting a 1-dimensional approximation
0.10} .'m' prediction @ prediction through averaging:
o]
0.05} d Jd —— dJc
] i ! i] Q@ 0.00 @] I I e R v LYY P N A
5 10 15 20 25 30 0.0 05 10 15 (3, tuv-V)C 0" ¢ T TV

Fig. S1. Reduction of the Boussinesq equations. On the lefl is the comparison belween the lraining data (blue) and the trained UPDE (ornage) over space al the 10th fitting
time point, and on the right is the same comparison shown over time at spatial midpoint.

where w'c’ is unknown.

» Instead of picking a form for w’c’(the current
method), replace it with a neural network and
learn it from small scale simulations!

Universal Differential
Equations extend

orevious physics-informed
neural network and deep
BSDE algorithms

UDE Methods Cover Accelerated Physics-

Informed Neural Network Methods

M

n, = mYn—m A mNN n—m)|; :Ma"'yN- .
= 2 Jamtm + S6nS ™" Wo-m), This methodology can be seen as a

universal differential equation with a
multistep integrator where adaptive=false

The UDE methodology thus gives an
generalization to:

» Implicit methods, SSP methods

» Runge-Kutta-Chebyshev methods
» SDEs, DAEs, DDEs, etc.

A comparative study of physics-informed neural network models for
learning unknown dynamics and constitutive relations Ramakrishna Our results indicate that the accuracy of the trained
Tipireddy, Paris Perdikaris, Panos Stinis and Alexandre Tartakovsky neural network models is much higher for the cases

Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical where we only have fo learn a consfitufive relation
Systems Maziar Raissi, Paris Perdikaris , and George Em Karniadakis instead of the whole dynamics.

29

Solving 1000 dimensional Hamilton-

Jacobi-Bellman via Universal SDEs

» Semilinear Parabolic Form (Diffusion-Advection dXt :M(t, Xt)dt + O'(t, Xt)th,

Equations, Hamilton-Jacobi-Bellman, Black-Scholes)

Z—?:(t,x)ﬁ—:l_)—Tr (aaT(t.I)(Hess,u)(!.I))-i—Vu(t.r)~;1(t.r) dUt :f(t7 th Ut? @%)dt

+f(t.x. ‘u(t.I).UT(LJ‘)VU(LI)):O (1]
+ AW,

Then the solution of Eq. 1 satisfies the following BSDE (cf., e.g.,
refs. 8 and 9):

u(t, Xy) —u(0, Xo)
=— /;!f(s.,\'.. u(s..\'.).n'r(s. X,) Vu(s, \)) ds 3]
[t o Use high orqler, .|mpl.|C|’r, adaptive SDE solvers
’ Train a solution in minutes
» Make (¢"Vu)(t,X) a neural network. _ . o
Using non-adaptive explicit 0.5 order
Euler-Maruyama matches the state-of-the-art
deep BSDE methods from the literature
Forward-Backward Stochastic Neural Networks: Deep

Learning of High-dimensional Parfial Differential Equations Splvmg high-dimensional partial gllfferentlal equations using deep learning
Maziar Raissi Jiequn Han, Arnulf Jentzen, and Weinan E

» Solve the resulting SDEs and learn ¢"Vu via:

1(0) =E [|9(Xex) — & ({ X Josasn, { Weoznen)]

http://orcid.org/0000-0002-3553-7313

UDEs are a BLAS/LAPACK of SciML

Scientific Machine Learning requires efficient
and accurate training of UDEs

Efficient and robust software for UDEs in the
Julia language result in efficient and robust
Implementations for many algorithms

DifferentialEquations.jl: high-performance
differential equation solvers

DiffEgFlux.jl: universal differential equation training
optimizers, sensitivity analysis, and layer functions

ModelingToolkit.jl: symbolic-numeric optimizations
and automated parallelism

NeuralPDE.jl: neural network solvers for PDEs,
including automated physics-informed neural
networks and deep BSDE methods for high

SClMI_ Open dimensional PDEs

Catalyst.jl: high-performance differentiable

S ource S Oﬂ'WO re modeling of chemical reaction networks

NBodySimulator.jl: high-performance

O rg Nad |ZO TIO N differentiable molecular dynamics

DataDrivenDiffEq.jl: Koopman Dynamic mode
decomposition (DMD) methods and sparse
identification (SInDy)

sciml.ai

And 50 more libraries that cannot be fitl

Time (s)

SCIML tools outperform ecosystems in

high and low level languages

Stiff 2: Hires
. —@- GRK4A
' CR —{l}- Rodas4P
. =@ Julia: Rosenbrock23 ——afp= CVODE_BDF

0 - —.— Julia: TREDF2 @~ ddebdf

wfipe | Uilia: radau @~ Rodas5

w—i@= Hairer: rodas 020 | s 10l
1072% | | =@ Hairer: radau = radau

=t MATLABE: 0de23s o= ~—gh— Isoda

~—p= MATLABE: 0de15s -~ ~—— RadaullAS
1028 | —fi— SciPy: LSODA = -

= SciPy: BOF = 10 B

e SCiPY: odeint

_zp | | =% deSolve: Isoda
10 9 —@- sundials: CVODE
10" |
1038 L
—
_ap | 0 %k .) ' .
10 | , , | | | , 1 i o 10°8 108
10°® 1078 1077 mE 10°° 10°* 10°° Error
mror

DifferentialEquations.jl’s stiff ODE solvers
https://qithub.com/SciML/SciMLBenchmarks.jl can Oufperform SUNDIALS CVODE (C++)

and Fortran methods like Radau

https://github.com/SciML/SciMLBenchmarks.jl

!;ﬁE David Duvenaud @DavidDuvenaud - Jul 17 v

; Neural ODEs are slow. We speed them up by regularizing their higher
derivatives, learning ODEs that are easy to solve:
arxiv.org/pdf/2007.04504...

Speed drives researchers RS s
fo Julia’s SCIML N \ ST

-

t?/

TR
&

o
P ——
——
EEDR-

Test problem: Lorenz equation \ ' |

» DifferentfialEquations.jl: 1.675 ms \-_ \ \’u \ \ ' /1

» Jax: 3.66ms (*from author of Jax) SR] lk i ,1 ,"" / ,,,,,

» Torchscript torchdiffeq: 48 seconds O e — Z@ - 2,
Simple neural ODE fraining (2-dimensional neural ODE @ et)

from Neural Ordinary Differential Equations Chen et al.):
Replying to @jessebett @TheyCallMeMr_ and 3 others

» DifferentfialEquations.jl: ~3 seconds (will show live!) Here the training/evaluation of the dynamics neural

» Torchdiffeq: ~300 seconds network and its higher order derivatives are in JAX
(python).
Not a problem in Julia, | used PyCall jl to import the
conda-environment + JAX code, calling my JAX neural
nets, vmaps, and jets fromlwithin the Julia ODE solver! |

4:12 PM - Jul 20, 2020 - Twitter Web App

m sundials (c++) PETSc TS (c++) iorchdlffeq Jax

Stiff ODEs and None None (one in
DAEs progress, ~200 times

slower than SciPy
according to the

authort)
Adjoint Stabilized Discrete Requires reversing Requires reversing

Methods checkpointing sensitivity analysis the ODE or the ODE

(equivalent to differentiate the
differentiate solver
through the
solver)

o _-- o b

SDEs None None torchsde, only None
diagonal noise (or
order 0.5), requires
reversing the SDE

None None None None

What do these features meane

SCIML Is not just for speed

SCIML IS FOR FLEXIBILITY, ACCURACY, AND CORRECTNESS

WARNING: SOME “EXPERT"” TALK HERE

ScIML is meticulously tested

v/ master Merge pull request #1215 from utkarsh530/extplmethods o #5442 passed > Restart build

Multi-threading for Implicit Extrapolation Methods (¢ Ran for 1 hr 26 min 58 sec

(Y) Total time 6 hrs 16 min 8 sec

Match behaviors
Commit a09a464 . o
Compare 96c3949. . a09a464 7| 18 hours ago eXOCle In pure JU“O,
e and fix bugs from the
widely used Fortran
Build jobs View config @ Full 'I'es'l' Sui'l'e iS Over COde (dQSOIVe, SCIPY)

® Christopher Rackauckas

' AF 54421 AMD64 £} Xenial Julia: 1 (1) GROUP=Interfacel a d CIY Of eve nTS, (9 44 min 59 sec
G 54422 AMDB4 £} Xenial Juliaz 1 [T] GROUP=Interfacell grOdienTS, GPUS, (9 31 min 34 sec
< 3 54423 AMDGE4 & Xenial Julia: 1 [T) GROUP=Integrators_| Convergence, (© 34 min 53 sec
< 3 54424 AMD64 £} Xenial Julia: 1 [T) GROUP=Integrators_ll S'I'OChCIS'I'lC (D 41 min 23 sec
v i 54425 AMDB4 £} Xenial Julia: 1 [T] GROUP=Regression_| d|S‘|T|bU‘I'|O|’]S, e‘l‘c (© 31 min 45 sec
vy 54426 AMD64 £} Xenial Julia: 1 [T] GROUP=Regression_l| (1) 26 min 47 sec
" FF 54427 AMDG4 . Xenial Juliaz 1 [T] GROUP=AlgConvergence_| () 37 min 57 sec
W I 544238 AMDG4 . Xenial Julia: 1 [T] GROUP=AlgConvergence_l|I (%) 44 min 16 sec
Vv 54429 AMD&4 £} Xenial Julia:z 1 1] GROUP=AlgConvergence_lll (1) 28 min 43 sec
1 5442.10 AMDG4 Xenial Julia: 1 [T] GROUP=Downstream (%) 41 min 42 sec
9 544211 AMDG4 Xenial Julia: 1 [T) GROUP=0DEInterfaceRegression (%) 12 min 9 sec

SCIML’s tools do noft rely on properties

which can faill fo hold

DifferentialEquations, ODEInterfaceDiffEqg, Plots
100
N —ult) | AN —ulft)
AN —u2(t) —u2(t)
! — u3it) — u3it)

100 F———

075} __. 075}
050 | Y 050 f X

02s } 025

i !
%,
.-"/z A ’
. yd
e
- e g

% S - L UUD I_ - -----. 1 1 1 1 1 --I D-UD :- 1 1 1 1 1 1 Jd
(sol2,tspan=(1e-2,1e5),xscale) 102 10! 1 10 10 100 1w 10 1w 10t 100 10 10t 10° w0t 10l
t t

{(pl,p2)

lI-Conditioned Gradients Cause
Ditficulties in Scienftific Machine Learning

0 gPee® 08y ’M“.{‘““t“.
10t} 105 ,-'° v v :
o I 103 b 1
Sl T Lup 2 — fu 10t
210 10 > !
E 102 % 101 f>é :
S i U] [P
100 10-1 102 | fI
01 — — L0-2 0
0 1000 20'op 3000 4000 5000 0 10,b00' zo,bpo 30,000 40,000 0 10,000 20,000 30,000 40,000
index iterations —e- Stiff (a1 =1, a»=4)
-#- Non-stiff (a; =1, a,=1)
Understanding and mitigating gradient pathologies
in physics-informed neural networks Off-the-shelf ML tools will not work on stiff
scientific machine learning problems!

Sifan Wang, Yujun Teng, Paris Perdikaris

DiffEgFlux has the features to handle

stiff ill-conditioned scientific problems

> a?OhTi%myf/gp&ig}riiéencsi'differen’riol equation solvers for » Mixed AD Hessian-free Newton-Krylov
9 RéCK th | ' for robust second order optimization
> methods
» Implicit methods (ODEs, SDEs, DAEs, DDEs) > Dlscrete and COHT!nUOUS Sens,l.hv”y
> Mulfistep methods analysis (checkpointed, stabilized, etc.)
» SSP methods (hyperbolic PDEs) ﬂ
. n 102 'I| —— Opt-DiSC 102 ,‘l — Opt-DiSC
» Adaptive SDE solvers (implicit, high order) 8 — Disc-Opt | — Disc-Opt
» Event handling Fg”wl 10!
» And these implementations are well-optimized: 800l 100
» DiffEgFlux trains the neural ODE from the original neural 0 100 200 300 0 10 50
ODE paper in ~3 seconds lteration Time (s)

> forchscript forchdiffeq : ~300 seconds Discretize-Optimize vs. Optimize-Discretize for Time-

!;'eTSSidln condition number 10** effectively frainedin Series Regression and Continuous Normalizing Flows
Hrona Derek Onken, Lars Ruthofto

40

DitfEgFlux.jl has the bells and whistles to
solve “real’” problems

Neural ODE with batching on the GPU (without internal data transfers) with high order adaptive
implicit ODE solvers for stiff equations using matrix-free Newton-Krylov via preconditioned GMRES

and frained using checkpointed adjoint equations.

using OrdinaryDiffEq, Flux, DiffEqFlux, DiffEqOperators, CuArrays
Float32[2.; ©.]| >gpu
Float32.((0.0f0,25.010))
Chain(Dense(2,50,tanh),Dense(56,2)) >gpu
p = DiffEqFlux.destructure(dudt)
dudt_(du,u: :TrackedArray,p,t) u DiffEqFlux.restructure(dudt,p)(u)
dudt_(du,u: :AbstractArray,p,t) u Flux.data(DiffEqFlux.restructure(dudt,p)(u))
ff - ODEFunction(dudt_,jac_prototype - JacVecOperator(dudt_ ,x))
prob - ODEProblem(ff,x,tspan,p)
diffeq_adjoint(p,prob,KenCarp4(linsolve-LinSolveGMRES());u@-x,
saveat-0.0:0.1:25.0,backsolve-false)

» Modeling with differential equations
» Solving differential equations with DifferentialEquations.|l
» Adding stochasticity, delays, events

» Introduction to challenge and learning problems

WOrkShOp » Workshop exercises (with answersl)

» HelicopterSciML Challenge Problem

Outline

» Magnetic Navigation Challenge Problem
» Automated model discovery via universal differential equations
» Parameter inference on differential equations
» Local and global optimization
» Bayesian optimization
» Mixing DiffEgFlux.jl and DataDrivenDiffEq.jl!

» Solving differential equations with neural networks (physics-
informed neural networks)

Now let’'s get fo coding

SOLVING DIFFERENTIAL EQUATIONS WITH STOCHASTICITY, DELAYS, AND EVENTS
AND THEN ADD SOME PARALLELISM

Let’s start coding some models:

Lotka-Volterra Equations

d ﬁ The Lotka-Volterra Equations: Model of Rabbits and Wolves

ash — B & — o

dt Exponential Gets eaten

d @ growth by wolves

Sk} — vk

dt Increases with Decreases with
more food competition

-

ODE Solver Packages on the

Common Interface

You do not need to change your code to use solves on the common interface! Julia might have the largest number of active
developers in the field! Other great solvers you should check out:

» OrdinaryDiffEq.jl: The workhorse

Sundials.jl: CVODE_BDF is a great stiff ODE solver

ODEInterfaceDiffEq.jl: radau is great for stiff ODEs at low tolerances (<1e-8)

LSODA jl: Isoda is all-around good for smaller ODEs (<100)

IRKGaussLegendre. jl: IRKGL16is 16™ order and symplectic, great for physical problems at really low tolerances (<1e-12)

vV v v Yy

» JuliaCon: Implicit RK solver for high precision numerical integration

v

Taylorintegration.jl: Great at low tolerances, can give error bounds

v

NeuralPDE.ji: parallized-in-time physics-informed neural network methods
» JuliaCon: Julia Track Google Code In and Beyond

» JuliaCon: Minisymposium on Partial Differential Equations
» GeometricintegratorsDiffEq.jl: Great fixed time-step methods for small ODEs (symplectic)
» QuDIffEq.jl: Great ODE solvers if you have a quantum computer and need to output QASM
» TimeMachine.jl: A priori fime stepping from Clima, great for multi-node MPI problems

vV v. vy

(Ditferentiable) Modeling Frameworks

ModelingToolkit.jl: symbolic-numerics for accelerated modeling

» JuliaCon: Auto-Optimization and Parallelism in DifferentialEquations.jl
Catalyst.jl: chemical reaction networks
Petri.jl and AlgebraicPetri.jl: Petri networks and applied category theory
NetworkDynamics.jl: dynamics on networks

» JuliaCon: NetworkDynamics.jl - Modeling dynamical systems on networks
PowerSimulationsDynamics.jl: dynamics of power grids

» JuliaCon: Crash Course in Energy Systems Modeling and Analysis with Julia
JUSDL.jl: causal modeling that can mix the various differential equations

» JuliaCon: Jusdl.jl - Julia Based System Description Language
BioEnergeticFoodWebs.jl: simulations of biomass flows
QuantumOptics.jl: simulations of quantum systems
DynamicalSystems.jl: dynamical systems and chaos analysis
RigidBodySim.jl: simulations of rigid-body dynamics and robotics

And so many more!

qithub.com/epirecipes/sir-julia

Various implementations of the
classical SIR model in Julia

https://github.com/epirecipes/sir-julia

» Infroduction to challenge and learning problems

WOrkShOp » Workshop exercises (with answersl)

» HelicopterSciML Challenge Problem

Outline

» Magnetic Navigation Challenge Problem
» Automated model discovery via universal differential equations
» Parameter inference on differential equations
» Local and global optimization
» Bayesian optimization
» Mixing DiffEgFlux.jl and DataDrivenDiffEq.jl!

» Solving differential equations with neural networks (physics-
informed neural networks)

ScIML challenge and

learning problems

Workshop Exercise Sheet

» hitps://tutorials.sciml.ai/html/exercises/01-workshop exercises.html

» Lots of exercises, from beginner to advanced

» Problems on performance optimization, parameter inference, neural ODEs

Solutions: https://tutorials.sciml.ai/html/exercises/02-workshop solutions.ntml

https://tutorials.sciml.ai/html/exercises/01-workshop_exercises.html
https://tutorials.sciml.ai/html/exercises/02-workshop_solutions.html

HelicopterSciML Challenge Problem:

Learn missing physics!

r"’J
Yaw Motor/Prop§ler —""f
(Control Input 2)

Pitch angle sensor

Pitch angle =

sty
é T Thrust f

@ Weak cross
_ Coupling

AN Goall: Discover the unexplained
physics of this system

Strong cross Coupling

Yaw axis

g

Yaw angle
(output 2)

Arduino + NI-DAQ + power j
box : USB plug n Play

” Pitch Motor/Propeller
(Control Input 1)

Yaw angle sensor

Figure 1: Laboratory helicopter, Sharma (2020).

hitps://qithub.com/SciML/HelicopterSciML jl

https://github.com/SciML/HelicopterSciML.jl

HelicopterSciML Challenge Problem

Example Solution

Before Augmentation After Discovery

Yaw angle: model (blue, solid) vs. data (red, dotted) Yaw angle: model + FNN(u)-eq (blue) vs. data (red)

200 150 — w

e g ::!: a
; -
time t [S] 0 20 40 tlﬁr?ne . [S] a0 100 120
. . . . T . 41 a= —4 1 (V¢ —4 _ -
Discovered missing higher FNN (u;p), = —4.37- 10" " cos (uy) +4.02 - 10" " sin ()

order friction terms FNN (u;p), &= —1.35 - 107 % cos (uy) + 7.74 - 10~ %u,.

Magnetic Navigation
Challenge Problem

HTTPS://GITHUB.COM/MIT-AI-ACCELERATOR/MAGNAV.JL

https://github.com/MIT-AI-Accelerator/MagNav.jl

Workshop

Outline

» Automated model discovery via universal differential equations
» Parameter inference on differential equations
» Local and global optimization
» Bayesian optimization
» Mixing DiffEgFlux.jl and DataDrivenDiffEq.jl!

» Solving differential equations with neural networks (physics-
informed neural networks)

Now let's do some modagel

INference

LEARN THE PARAMETERS OF A DIFFERENTIAL EQUATION
THEN LEARN THE MISSING PIECES OF A DIFFERENTIAL EQUATION

Universal ODEs learn and extrapolate

other dynamical behaviors

Truth
T = ar — [y,

20 x(t)
]) o y() 15 /
y=TEY é(y' 102° | r\ / 1.2
V /\ 0.9 e Neeural Network
1030 ¢ V V 0.6 / True Missing Term

A Timeseries of UODE Error B Neural Network Fit of U2(t)

Parfially-known neural embedded equations

1032 ¢
T = ar—U(z,y), C
y = —oy + Uz(z,y), (- Training 8o
6 —_— -Er tm):,a(tt)d x(t)
Automatically recover the long-term behavior “R ——e
from less than half of a period in a cyclic 2
time series! o 5 10 15 20

Turn neural networks back into equations with SInDy. Let’s do this example!

Packages for model inference

» DiffEgFlux.jl: helpers for performing inference on models. Interface over:
» Opftim.jl: workhorse optimizers like BFGS
» Flux.jl: specialized neural network optimizers like ADAM
» BlackBoxOptim.jl: very robust global optimizers
» Evolutionary.jl: genetic algorithms and CMA
» And many more!
DataDrivenDiffEq.jl: methods for Koopman DMD and SInDy (turning data into equationsl!)
Turing.jl: Bayesian estimation
Gen

GalacticOptim.jl: differentiable local+global optimizer interface. Coming soon!

vV v v Vv

Workshop

Outline

» Solving differential equations with neural networks (physics-
informed neural networks)

NeuralPDE.|l: Automated PDE Solving
via Neural Networks

predict

analytic

x(u(x,y,0)) + Dyy(u(x,y,8)) ~ -sin(pi*x)*sin(pi*y)

0.f0, u(l,y) ~ -sin(pi*1)*sin(pi*y),

~ -sin(pi*x)*sin(pi*1)]
1Domain(9.0,1.8)]

[u(@,y)
4(x,0) ~ 0.f0, u(x,1)
omain(@.@,1.0),y €

= [x € Interval
hysicsInformedNN(@.1)

bcs

domains
discretization

opt = Flux.ADAM(9.62)
FastChain(FastDense(2,16,Flux.o),F

pde_system

prob = discr
NDE(chain,opt,autodiff=false)

alg = N
verbose=true, maxiters=5000)

1e
1Es

phi,res

What is this library doinge

» The deep BSDE method

» Mentioned earlier: can be tfransformed into a universal stochastic differential
equation and solved via DiffEgFlux.jl

» Physics-informed neural networks

For understanding, let’s build the simplest physics-informed neural network
from scratch!

» Letu' = f(u,t) with u(0) = uy,. We want to build a neural network NN(t) that
Is the solution to this differential equation.

» By definifion then, we must have that NN'(t) = f(NN(t),t) and NN(0) = u,
» Define C(0) =Y,|INN'(t) — f(NN(t),t)|| for 8 the parameters of the ODE

» Then this cost is zero when NN(t) is the solution to the ODE

» Therefore minimize this loss to get the solution!

» Extra trick: g(t) = tNN(t) — uy is an approximator that always satisfies the
boundary condition

Why Physics-Informed Neural Networkse

> C(0) = Cpae(0) + Choundary (@) + Cyqeq(6) can nudge a model fowards data
» Equivalent to regularizing the neural network by a scientific equation

» Can train fast continuous surrogates by making the neural network
parameter dependent

Time 1o build a physics-
InNformed neural network In

Flux|

Thank you! For more information, check out JuliaCon starting next week!

Probabilistic Optimization with the Koopman Operator, July 29

SciML: Automatic Discovery of droplet fragmentation Physics, July 29t
Exploring Disease Vector Dynamics Under Environmental Change, July 29t
NetworkDynamics.jl - Modeling dynamical systems on networks, July 30t
Automarted optimization and parallelism with DifferentialEquations.jl, July 315t

all feature SciML tools, along with many, many morel

Mix neural networks Julia’s SciML software
with FDM, FVM, FEM, ecosystem is built to
pseudospectral handle the sparse, stiff,
methods, implicit ODE and ill-conditioned
solvers, high order problems of readl
adaptive SDE solver, ... science

