
Doing Scientific Machine 

Learning with Julia’s SciML 

Ecosystem

CHRIS RACKAUCKAS

APPLIED MATHEMATICS INSTRUCTOR, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MATHEMATICS

SENIOR RESEARCH ANALYST, UNIVERSITY OF MARYLAND, BALTIMORE, SCHOOL OF PHARMACY

DIRECTOR OF SCIENTIFIC RESEARCH, PUMAS-AI



What to expect from this workshop

We will go through “what is scientific machine learning” all the way through some 
examples of how to do scientific machine learning in Julia:

 Parameter inference of differential equation model

 Add events to equations, add stochasticity, add delays

 Bayesian inference of scientific models

This tutorial is meant to be raw:

 We’re going to be live coding

 “We”, as in you and me!

 We are going to be learning the methods as we learn to write the code

 We are going to learn how to navigate the ecosystem, the documentation, 
the IDE, the error messages



How to Help!

 Star the repositories

 DifferentialEquations.jl, DiffEqFlux.jl, 
DataDrivenDiffEq.jl, NeuralPDE.jl, 
ModelingToolkit.jl, Catalyst.jl

 Flux.jl, Zygote.jl, SparseDiffTools.jl, etc.

 Report bugs

 Create tutorials

 Write blog posts

 Share data and challenge problems

 Help in chats and community channels

 Add your own packages to the common 
interface

 Contribute to the SciML packages

Studies in Pandemic Preparedness
Simon Frost

We thank all of those who have previously

helped SciML development



Workshop 

Outline

 Overview of scientific machine learning and SciML

 What is scientific machine learning?

 What makes the SciML ecosystem unique? 

 Introduction to challenge and learning problems

 Workshop exercises (with answers!)

 HelicopterSciML Challenge Problem

 Magnetic Navigation Challenge Problem

 Modeling with differential equations

 Solving differential equations with DifferentialEquations.jl

 Adding stochasticity, delays, events

 Automated model discovery via universal differential equations

 Parameter inference on differential equations

 Local and global optimization

 Bayesian optimization

 Mixing DiffEqFlux.jl and DataDrivenDiffEq.jl!

 Solving differential equations with neural networks (physics-
informed neural networks)



Scientific machine learning is the 

mixture of scientific models with 

data-driven machine learning 

components for data-efficient 

model-based decision making



Universal 

Approximation 

Theorem

NEURAL NETWORKS CAN GET 𝜖 CLOSE TO ANY 

𝑅𝑛 → 𝑅𝑚 FUNCTION 

Neural networks are just function expansions, 

fancy Taylor Series like things which are good 

for computing and bad for analysis. 

Neural networks work well in high dimensions

6



The major advances in 
machine learning were due to 
encoding more structure into 

the model 
MORE STRUCTURE = FASTER AND BETTER FITS FROM LESS DATA

7



Convolutional Neural Networks Are 

Structure Assumptions



Universal Differential Equations: 

Differential Equations defined in part 

by universal approximators

Use all known scientific features, use 

all numerical methods, have neural 

networks cover the last mile



Demonstration of UDEs on a toy model

A conceptual model for the coronavirus 
disease 2019 (COVID-19) outbreak in 
Wuhan, China with individual reaction 
and governmental action
Lin, Qianying et al.

International Journal of Infectious 

Diseases, Volume 93, 211 - 216

𝜅 = 1117.3



Neural ODE: Learn the whole model

u’=NN(u)

Can fit, but not enough information to 

accurately extrapolate

Does not have the correct asymptotic 

behavior



Universal ODE

Replace 

Unknown 

Portion

Replace 

Unknown 

Portion

Infection rates: known

From disease quantities

Percentage of cases

known to be severe,

can be estimated

Exposure:

Unknown



SInDy – Sparse Identification of 

Dynamical Systems

 Operation[cos(u₁) * -0.0013108600297508188 + cos(u₂) * 0.001048733466930909 + 
sin(u₃) * 0.002524237642240494 + 4.582000697122147 + u₃ * 48.22745315102507 + u₃
^ 2 * -0.5293305992835255 + u₂ * 39.085961651678964 + u₂ * u₃ * -
0.6742175940650399 + u₂ * u₃ ^ 2 * 0.0018086945606415868 + u₂ ^ 2 * -
0.7760315827702667 + u₂ ^ 2 * u₃ * -0.00827007707292397 + u₂ ^ 2 * u₃ ^ 2 * -
4.8420203054602525e-5 + u₁ * 0.6927075862062384 + u₁ * u₃ * 2.5477896384187675 + 
u₁ * u₃ ^ 2 * -0.007633697801342265 + u₁ * u₂ * -0.8050223920175605 + u₁ * u₂ * u₃ * -
0.005893734488035572 + u₁ * u₂ * u₃ ^ 2 * -4.205818407350913e-5 + u₁ * u₂ ^ 2 * 
0.05154776022562611 + u₁ * u₂ ^ 2 * u₃ * 0.00011401535262358879 + u₁ * u₂ ^ 2 * u₃ ^ 
2 * -1.8409670007515867e-7 + u₁ ^ 2 * -1.480917344589218 + u₁ ^ 2 * u₃ * 
0.022834435321810845 + u₁ ^ 2 * u₃ ^ 2 * -7.10505011605666e-5 + u₁ ^ 2 * u₂ * -
0.0811262292209696 + u₁ ^ 2 * u₂ * u₃ * 1.2503710381374686e-5 + u₁ ^ 2 * u₂ * u₃ ^ 2 
* -1.5835869421530206e-7 + u₁ ^ 2 * u₂ ^ 2 * 0.0003756078420420898 + u₁ ^ 2 * u₂ ^ 2 
* u₃ * 2.0403671083190194e-6 + u₁ ^ 2 * u₂ ^ 2 * u₃ ^ 2 * -4.0790059067580516e-10, 
cos(u₁) * 0.0018236630124880049 + sin(u₃) * -0.002857556410244201 + 
0.738713743952307 + u₃ * -45.316633125282735 + u₃ ^ 2 * 0.4976552341495027 + u₂ * 
-36.669905096040644 + u₂ * u₃ * 0.63405194300575 + u₂ * u₃ ^ 2 * -
0.001699189499009162 + u₂ ^ 2 * 0.7292234161358288 + u₂ ^ 2 * u₃ * 
0.007782847250932861 + u₂ ^ 2 * u₃ ^ 2 * 4.5537832343115385e-5 + u₁ * -
0.662837140886116 + u₁ * u₃ * -2.3955577736237044 + u₁ * u₃ ^ 2 * 
0.007174813124917316 + u₁ * u₂ * 

 0.7564652530371222 + u₁ * u₂ * u₃ * 0.005539740817006857 + u₁ * u₂ * u₃ ^ 2 * 
3.952859749575076e-5 + u₁ * u₂ ^ 2 * -0.04846972496409705 + u₁ * u₂ ^ 2 * u₃ * -
0.00010714683124587004 + u₁ * u₂ ^ 2 * u₃ ^ 2 * 1.7315253185547634e-7 + u₁ ^ 2 * 
1.3922758705496125 + 

 u₁ ^ 2 * u₃ * -0.021478161074782457 + u₁ ^ 2 * u₃ ^ 2 * 6.675620535553527e-5 + u₁ ^ 
2 * u₂ * 0.07628907557295377 + u₁ ^ 2 * u₂ * u₃ * -1.174623626431566e-5 + u₁ ^ 2 * u₂
* u₃ ^ 2 * 1.4858536352836396e-7 + u₁ ^ 2 * u₂ ^ 2 * -0.0003531614272747699 + u₁ ^ 2 
* u₂

 ^ 2 * u₃ * -1.9178976768869506e-6 + u₁ ^ 2 * u₂ ^ 2 * u₃ ^ 2 * 3.8405659245262027e-
10, -0.04932474700217403 + u₂ * 0.17406814677977456 + u₁ ^ 2 * u₂ * -
1.4594144102122378e-6]

Brunton, Steven L., Joshua L. Proctor, and J. Nathan 

Kutz. "Discovering governing equations from data by 

sparse identification of nonlinear dynamical 

systems." Proceedings of the national academy of 

sciences 113.15 (2016): 3932-3937.

Not Enough

Data! Unable

to achieve a

sparse basis



Universal ODE -> Internal Sparse Regression
Sparse Identification on only the missing term
Operation[u₂ * 0.10234428543435758 + u₁ * u₂ * 0.11371750552005416 + 

u₁ ^ 2 * u₂ * 0.12635459799855597] of u=(S/N,I,D/N)

Replace 

Unknown 

Portion

Replace 

Unknown 

Portion



ML-Augmented Scientific 

Modeling

1. IDENTIFY KNOWN PARTS OF A MODEL, BUILD A UODE

2. TRAIN A NEURAL NETWORK (OR OTHER APPROXIMATOR) TO CAPTURE 
THE MISSING MECHANISMS

3. SPARSE IDENTIFY THE MISSING TERMS TO MECHANISTIC TERMS

4. VERIFY THE MECHANISMS ARE SCIENTIFICALLY PLAUSIBLE

5. EXTRAPOLATE, DO ASYMPTOTIC ANALYSIS, PREDICT BIFURCATIONS

6. GET MORE DATA TO VERIFY THE NEW TERMS

UTILIZE ALL ADVANCED NUMERICAL METHODS WITH ML!



U-ODE’s for eVTOL Battery Modeling: 19% 
Increase in Degradation Modeling Accuracy 

A. Bills, S. Sripad, W. L. Fredericks, M. Guttenberg, D. Charles E. Frank, V. Viswanathan, Universal Battery Performance and Degradation Model for Electric Aircraft, DOI: 10.26434/chemrxiv.12616169.v1
https://electrek.co/2018/04/14/tesla-battery-degradation-data/

Coupled Electrochemical-Thermal Performance Model
U-ODE Degradation Model

https://electrek.co/2018/04/14/tesla-battery-degradation-data/


Data-Driven Quantification of 

Quarantine Strength



Diagnostics 
En Masse 
Reveal 
Interesting 
Trends



But ODEs are simple, lets 

move to more difficult 

equations



Warning: these next few slides may 
be information overload if you’re not 
familiar with scientific computing. 
That’s okay! Take in what you can.



Universal Differential-Algebraic Equations:

Encoding Physical Constraints

Utilize known chemical kinetics

With known conservation laws

Learn highly stiff equations: Hessian condition number 𝟏𝟎𝟏𝟑
Convert to a mass-matrix DAE 

(singular mass matrix) and fit



Discretized PDE Operators are 

Convolutions

Is equivalent to the stencil



Automatically Learning PDEs from 

Data: Universal PDEs for Fisher-KPP

Truth: Fisher-KPP Equations

Truth: Universal Differential Equation

Automatically recover that the dynamical system

has a diffusion operator and a quadratic reaction

term!



Embedding Neural Networks 

into Scientific Simulation Can 

Also Be Used To Accelerate!



Universal ODEs Accelerate Non-

Newtonian Fluid Simulations 

Transform a system

Of DAEs into 

Parameterized

system of ODEs,

2x acceleration



Universal PDEs for Acceleration: 

Automated Climate Parameterizations

 Boussinesq Equations (Navier-Stokes) are used in 
climate models

 People attempt to solve this by “parameterizing”, 
i.e. getting a 1-dimensional approximation 
through averaging:

where 𝑤′𝑐′ is unknown.

 Instead of picking a form for 𝑤′𝑐′(the current 
method), replace it with a neural network and 
learn it from small scale simulations!

26



Universal Differential 

Equations extend 

previous physics-informed 

neural network and deep 

BSDE algorithms



UDE Methods Cover Accelerated Physics-

Informed Neural Network Methods

This methodology can be seen as a 
universal differential equation with a 
multistep integrator where adaptive=false

The UDE methodology thus gives an 
generalization to:

 Implicit methods, SSP methods

 Runge-Kutta-Chebyshev methods

 SDEs, DAEs, DDEs, etc.

A comparative study of physics-informed neural network models for 
learning unknown dynamics and constitutive relations Ramakrishna 
Tipireddy, Paris Perdikaris, Panos Stinis and Alexandre Tartakovsky

Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical 
Systems Maziar Raissi, Paris Perdikaris , and George Em Karniadakis

Our results indicate that the accuracy of the trained 
neural network models is much higher for the cases 
where we only have to learn a constitutive relation 
instead of the whole dynamics.



Solving 1000 dimensional Hamilton-

Jacobi-Bellman via Universal SDEs

 Semilinear Parabolic Form (Diffusion-Advection 
Equations, Hamilton-Jacobi-Bellman, Black-Scholes)

 Make (𝜎𝑇∇u) 𝑡, 𝑋 a neural network.

 Solve the resulting SDEs and learn 𝜎𝑇∇u via:

29

Use high order, implicit, adaptive SDE solvers

Train a solution in minutes

Using non-adaptive explicit 0.5th order 

Euler-Maruyama matches the state-of-the-art

deep BSDE methods from the literature

Solving high-dimensional partial differential equations using deep learning

Jiequn Han, Arnulf Jentzen, and Weinan E

Forward-Backward Stochastic Neural Networks: Deep 
Learning of High-dimensional Partial Differential Equations
Maziar Raissi

http://orcid.org/0000-0002-3553-7313


UDEs are a BLAS/LAPACK of SciML

Scientific Machine Learning requires efficient 

and accurate training of UDEs

Efficient and robust software for UDEs in the 

Julia language result in efficient and robust 

implementations for many algorithms

30



SciML Open 

Source Software 

Orgnaization

sciml.ai

 DifferentialEquations.jl: high-performance 
differential equation solvers

 DiffEqFlux.jl: universal differential equation training 
optimizers, sensitivity analysis, and layer functions

 ModelingToolkit.jl: symbolic-numeric optimizations 
and automated parallelism

 NeuralPDE.jl: neural network solvers for PDEs, 
including automated physics-informed neural 
networks and deep BSDE methods for high 
dimensional PDEs

 Catalyst.jl: high-performance differentiable 
modeling of chemical reaction networks

 NBodySimulator.jl: high-performance 
differentiable molecular dynamics

 DataDrivenDiffEq.jl: Koopman Dynamic mode 
decomposition (DMD) methods and sparse 
identification (SInDy)

And 50 more libraries that cannot be fit!

31



SciML tools outperform ecosystems in 

high and low level languages

DifferentialEquations.jl’s stiff ODE solvers

can outperform SUNDIALS CVODE (C++) 

and Fortran methods like Radau

https://github.com/SciML/SciMLBenchmarks.jl

https://github.com/SciML/SciMLBenchmarks.jl


Speed drives researchers

to Julia’s SciML

Test problem: Lorenz equation

 DifferentialEquations.jl: 1.675 ms

 Jax: 3.66ms (*from author of Jax)

 Torchscript torchdiffeq: 48 seconds

Simple neural ODE training (2-dimensional neural ODE 

from Neural Ordinary Differential Equations Chen et al.):

 DifferentialEquations.jl: ~3 seconds (will show live!)

 Torchdiffeq: ~300 seconds



Feature SciML Sundials (C++) PETSc TS (C++) torchdiffeq Jax

Stiff ODEs and 
DAEs

Hundreds of methods 

tested and tuned on 

hundreds of problems

Yes 

(CVODE_BDF 

and IDA)

Yes (Rosenbrock-

W methods, BDFs, 

etc.)

None None (one in 

progress, ~200 times 

slower than SciPy 

according to the 

author!)

Adjoint 
Methods

8 choices tuned for 

different scenarios, 

including stabilized 

checkpointing, 

differentiate the solver, 

reversing adjoint

Stabilized 

checkpointing

Discrete 

sensitivity analysis 

(equivalent to 

differentiate 

through the 

solver)

Requires reversing 

the ODE or 

differentiate the 

solver

Requires reversing 

the ODE

Parallelism GPU, MPI, multithreading GPU, MPI, 

multithreading

GPU, MPI, and 

multithreading

GPU GPU

Event handing Yes Yes Yes None None

SDEs Lots of methods, 

including stabilized, 

methods for stiff 

equations, high strong 

order, high weak order

None None torchsde, only 

diagonal noise (or 

order 0.5), requires 

reversing the SDE

None

Delays All ODE methods None None None None



What do these features mean?

SciML is not just for speed
SCIML IS FOR FLEXIBILITY, ACCURACY, AND CORRECTNESS

WARNING: SOME “EXPERT” TALK HERE



SciML is meticulously tested 

Match behaviors 

exactly in pure Julia, 

and fix bugs from the 

widely used Fortran 

code (deSolve, SciPy)Full test suite is over 

a day of events, 

gradients, GPUs, 

convergence, 

stochastic 

distributions, etc.



SciML’s tools do not rely on properties 

which can fail to hold



Ill-Conditioned Gradients Cause 

Difficulties in Scientific Machine Learning

Understanding and mitigating gradient pathologies 

in physics-informed neural networks

Sifan Wang, Yujun Teng, Paris Perdikaris
Off-the-shelf ML tools will not work on stiff

scientific machine learning problems!



DiffEqFlux has the features to handle 

stiff ill-conditioned scientific problems

 Mixed AD Hessian-free Newton-Krylov

for robust second order optimization

 Discrete and continuous sensitivity 

analysis (checkpointed, stabilized, etc.)

Discretize-Optimize vs. Optimize-Discretize for Time-

Series Regression and Continuous Normalizing Flows

Derek Onken, Lars Ruthotto

 300 highly optimized differential equation solvers for 
highly stiff equations:

 ROCK methods

 Implicit methods (ODEs, SDEs, DAEs, DDEs)

 Multistep methods

 SSP methods (hyperbolic PDEs)

 Adaptive SDE solvers (implicit, high order) 

 Event handling

 And these implementations are well-optimized:

 DiffEqFlux trains the neural ODE from the original neural 
ODE paper in ~3 seconds

 torchscript torchdiffeq : ~300 seconds

Hessian condition number 𝟏𝟎𝟏𝟑 effectively trained in 
tutorials



DiffEqFlux.jl has the bells and whistles to 

solve “real” problems

Neural ODE with batching on the GPU (without internal data transfers) with high order adaptive 

implicit ODE solvers for stiff equations using matrix-free Newton-Krylov via preconditioned GMRES 

and trained using checkpointed adjoint equations.

40



Workshop 

Outline

 Overview of scientific machine learning and SciML

 What is scientific machine learning?

 What makes the SciML ecosystem unique? 

 Modeling with differential equations

 Solving differential equations with DifferentialEquations.jl

 Adding stochasticity, delays, events

 Introduction to challenge and learning problems

 Workshop exercises (with answers!)

 HelicopterSciML Challenge Problem

 Magnetic Navigation Challenge Problem

 Automated model discovery via universal differential equations

 Parameter inference on differential equations

 Local and global optimization

 Bayesian optimization

 Mixing DiffEqFlux.jl and DataDrivenDiffEq.jl!

 Solving differential equations with neural networks (physics-
informed neural networks)



Now let’s get to coding
SOLVING DIFFERENTIAL EQUATIONS WITH STOCHASTICITY, DELAYS, AND EVENTS

AND THEN ADD SOME PARALLELISM



𝑑🐇

𝑑𝑡
= 𝛼🐇 − 𝛽🐇🐺

𝑑🐺

𝑑𝑡
= 𝛿🐇🐺 − 𝛾🐺

Let’s start coding some models:

Lotka-Volterra Equations

Decreases with 

competition
Increases with 

more food

Exponential 

growth

Gets eaten 

by wolves

43



ODE Solver Packages on the 

Common Interface

You do not need to change your code to use solves on the common interface! Julia might have the largest number of active 
developers in the field! Other great solvers you should check out:

 OrdinaryDiffEq.jl: The workhorse

 Sundials.jl: CVODE_BDF is a great stiff ODE solver

 ODEInterfaceDiffEq.jl: radau is great for stiff ODEs at low tolerances (<1e-8)

 LSODA.jl: lsoda is all-around good for smaller ODEs (<100)

 IRKGaussLegendre.jl: IRKGL16 is 16th order and symplectic, great for physical problems at really low tolerances (<1e-12) 

 JuliaCon: Implicit RK solver for high precision numerical integration

 TaylorIntegration.jl: Great at low tolerances, can give error bounds

 NeuralPDE.jl: parallized-in-time physics-informed neural network methods

 JuliaCon: Julia Track Google Code In and Beyond

 JuliaCon: Minisymposium on Partial Differential Equations

 GeometricIntegratorsDiffEq.jl: Great fixed time-step methods for small ODEs (symplectic)

 QuDiffEq.jl: Great ODE solvers if you have a quantum computer and need to output QASM

 TimeMachine.jl: A priori time stepping from Clima, great for multi-node MPI problems



(Differentiable) Modeling Frameworks

 ModelingToolkit.jl: symbolic-numerics for accelerated modeling

 JuliaCon: Auto-Optimization and Parallelism in DifferentialEquations.jl

 Catalyst.jl: chemical reaction networks

 Petri.jl and AlgebraicPetri.jl: Petri networks and applied category theory

 NetworkDynamics.jl: dynamics on networks

 JuliaCon: NetworkDynamics.jl - Modeling dynamical systems on networks

 PowerSimulationsDynamics.jl: dynamics of power grids

 JuliaCon: Crash Course in Energy Systems Modeling and Analysis with Julia

 JuSDL.jl: causal modeling that can mix the various differential equations

 JuliaCon: Jusdl.jl - Julia Based System Description Language

 BioEnergeticFoodWebs.jl: simulations of biomass flows

 QuantumOptics.jl: simulations of quantum systems

 DynamicalSystems.jl: dynamical systems and chaos analysis

 RigidBodySim.jl: simulations of rigid-body dynamics and robotics

And so many more!

github.com/epirecipes/sir-julia

Various implementations of the 

classical SIR model in Julia

https://github.com/epirecipes/sir-julia


Workshop 

Outline

 Overview of scientific machine learning and SciML

 What is scientific machine learning?

 What makes the SciML ecosystem unique? 

 Modeling with differential equations

 Solving differential equations with DifferentialEquations.jl

 Adding stochasticity, delays, events

 Introduction to challenge and learning problems

 Workshop exercises (with answers!)

 HelicopterSciML Challenge Problem

 Magnetic Navigation Challenge Problem

 Automated model discovery via universal differential equations

 Parameter inference on differential equations

 Local and global optimization

 Bayesian optimization

 Mixing DiffEqFlux.jl and DataDrivenDiffEq.jl!

 Solving differential equations with neural networks (physics-
informed neural networks)



SciML challenge and 

learning problems



Workshop Exercise Sheet

 https://tutorials.sciml.ai/html/exercises/01-workshop_exercises.html

 Lots of exercises, from beginner to advanced

 Problems on performance optimization, parameter inference, neural ODEs

Solutions: https://tutorials.sciml.ai/html/exercises/02-workshop_solutions.html

https://tutorials.sciml.ai/html/exercises/01-workshop_exercises.html
https://tutorials.sciml.ai/html/exercises/02-workshop_solutions.html


HelicopterSciML Challenge Problem: 

Learn missing physics!

https://github.com/SciML/HelicopterSciML.jl

Goal: Discover the unexplained

physics of this system

https://github.com/SciML/HelicopterSciML.jl


HelicopterSciML Challenge Problem 

Example Solution

Before Augmentation After Discovery

Discovered missing higher 

order friction terms



Magnetic Navigation 

Challenge Problem
HTTPS://GITHUB.COM/MIT-AI-ACCELERATOR/MAGNAV.JL

https://github.com/MIT-AI-Accelerator/MagNav.jl


Workshop 

Outline

 Overview of scientific machine learning and SciML

 What is scientific machine learning?

 What makes the SciML ecosystem unique? 

 Modeling with differential equations

 Solving differential equations with DifferentialEquations.jl

 Adding stochasticity, delays, events

 Introduction to challenge and learning problems

 Workshop exercises (with answers!)

 HelicopterSciML Challenge Problem

 Magnetic Navigation Challenge Problem

 Automated model discovery via universal differential equations

 Parameter inference on differential equations

 Local and global optimization

 Bayesian optimization

 Mixing DiffEqFlux.jl and DataDrivenDiffEq.jl!

 Solving differential equations with neural networks (physics-
informed neural networks)



Now let’s do some model 

inference
LEARN THE PARAMETERS OF A DIFFERENTIAL EQUATION

THEN LEARN THE MISSING PIECES OF A DIFFERENTIAL EQUATION



Universal ODEs learn and extrapolate

other dynamical behaviors

Truth

Partially-known neural embedded equations

Automatically recover the long-term behavior

from less than half of a period in a cyclic 

time series!

Turn neural networks back into equations with SInDy. Let’s do this example!



Packages for model inference

 DiffEqFlux.jl: helpers for performing inference on models. Interface over:

 Optim.jl: workhorse optimizers like BFGS

 Flux.jl: specialized neural network optimizers like ADAM

 BlackBoxOptim.jl: very robust global optimizers

 Evolutionary.jl: genetic algorithms and CMA

 And many more!

 DataDrivenDiffEq.jl: methods for Koopman DMD and SInDy (turning data into equations!) 

 Turing.jl: Bayesian estimation

 Gen

 GalacticOptim.jl: differentiable local+global optimizer interface. Coming soon!



Workshop 

Outline

 Overview of scientific machine learning and SciML

 What is scientific machine learning?

 What makes the SciML ecosystem unique? 

 Modeling with differential equations

 Solving differential equations with DifferentialEquations.jl

 Adding stochasticity, delays, events

 Introduction to challenge and learning problems

 Workshop exercises (with answers!)

 HelicopterSciML Challenge Problem

 Magnetic Navigation Challenge Problem

 Automated model discovery via universal differential equations

 Parameter inference on differential equations

 Local and global optimization

 Bayesian optimization

 Mixing DiffEqFlux.jl and DataDrivenDiffEq.jl!

 Solving differential equations with neural networks (physics-
informed neural networks)



NeuralPDE.jl: Automated PDE Solving 

via Neural Networks



What is this library doing?

 The deep BSDE method

 Mentioned earlier: can be transformed into a universal stochastic differential 

equation and solved via DiffEqFlux.jl

 Physics-informed neural networks

For understanding, let’s build the simplest physics-informed neural network 

from scratch!



Solve an ODE with a neural network

 Let 𝑢′ = 𝑓(𝑢, 𝑡) with 𝑢 0 = 𝑢0. We want to build a neural network NN(𝑡) that 

is the solution to this differential equation.

 By definition then, we must have that 𝑁𝑁′ 𝑡 = 𝑓(𝑁𝑁 𝑡 , 𝑡) and 𝑁𝑁 0 = 𝑢0

 Define 𝐶 𝜃 = σ𝑡 ‖𝑁𝑁′ 𝑡 − 𝑓(𝑁𝑁 𝑡 , 𝑡)‖ for 𝜃 the parameters of the ODE

 Then this cost is zero when 𝑁𝑁 𝑡 is the solution to the ODE

 Therefore minimize this loss to get the solution!

 Extra trick: 𝑔 𝑡 = 𝑡𝑁𝑁 𝑡 − 𝑢0 is an approximator that always satisfies the 

boundary condition



Why Physics-Informed Neural Networks?

 𝐶 𝜃 = 𝐶𝑝𝑑𝑒 𝜃 + 𝐶𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝜃 + 𝐶𝑑𝑎𝑡𝑎 𝜃 can nudge a model towards data

 Equivalent to regularizing the neural network by a scientific equation

 Can train fast continuous surrogates by making the neural network 

parameter dependent



Time to build a physics-

informed neural network in 

Flux!



Thank you! For more information, check out JuliaCon starting next week!

Probabilistic Optimization with the Koopman Operator, July 29th

SciML: Automatic Discovery of droplet fragmentation Physics, July 29th

Exploring Disease Vector Dynamics Under Environmental Change, July 29th

NetworkDynamics.jl - Modeling dynamical systems on networks, July 30th

Automated optimization and parallelism with DifferentialEquations.jl, July 31st

all feature SciML tools, along with many, many more!

62

Mix neural networks 
with FDM, FVM, FEM, 

pseudospectral
methods, implicit ODE 

solvers, high order 
adaptive SDE solver, …

Julia’s SciML software 
ecosystem is built to 

handle the sparse, stiff, 
and ill-conditioned 

problems of real 
science


